
Received June 16, 2020, accepted July 2, 2020, date of publication July 7, 2020, date of current version July 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3007747

FENCE: Fast, ExteNsible, and ConsolidatEd
Framework for Intelligent Big
Data Processing
RAMNEEK 1, (Associate Member, IEEE), SEUNG-JUN CHA2,
SANGHEON PACK 1, (Senior Member, IEEE), SEUNG HYUB JEON2,
YEON JEONG JEONG2, JIN MEE KIM2, AND SUNGIN JUNG2
1School of Electrical Engineering, Korea University, Seoul 02841, South Korea
2Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, South Korea

Corresponding author: Sangheon Pack (shpack@korea.ac.kr)

This research was supported in part by National Research Foundation (NRF) Grant (No. 2020R1A2C3006786), and in part by Institute of
Information and communications Technology Promotion (IITP) Grant (No. 2014-3-00035 and IITP-2019-2017-0-01633).

ABSTRACT The proliferation of smart devices and the advancement of data-intensive services has led to
explosion of data, which uncovers massive opportunities as well as challenges related to real-time analysis of
big data streams. The edge computing frameworks implemented over manycore systems can be considered as
a promising solution to address these challenges. However, in spite of the availability of modern computing
systems with a large number of processing cores and high memory capacity, the performance and scalability
of manycore systems can be limited by the software and operating system (OS) level bottlenecks. In this
work, we focus on these challenges, and discuss how accelerated communication, efficient caching, and
high performance computation can be provisioned over manycore systems. The proposed Fast, ExteNsible,
and ConsolidatEd (FENCE) framework leverages the availability of a large number of computing cores
and overcomes the OS level bottlenecks to provide high performance and scalability for intelligent big
data processing. We implemented a prototype of FENCE and the experiment results demonstrate that
FENCE provides improved data reception throughput, read/write throughput, and application processing
performance as compared to the baseline Linux system.

INDEX TERMS Manycore systems, edge computing, stream analytics, big data, IoT.

I. INTRODUCTION
Recently, the amount of data being generated by users,
applications and devices is increasing at a staggering rate,
and 90 percent of the data in the world was generated in the
last few years [1]. The pace of data growth is further accel-
erated by penetration of internet of things (IoT) into various
industrial sectors and mission critical applications, such as
manufacturing, agriculture, transport, healthcare, and others.
Such emergence of industrial IoT (IIoT) is driven by its
ability of providing improved operational efficiency, as well
as increased revenue by creating new business models, and
making faster business decisions by means of machine-to-
machine (M2M) communications with real-time big data ana-
lytics [2]. For instance, IIoT can be applied to manufacturing

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhenyu Zhou .

for automation and streamlining of system operations, for
asset tracking and supply chain monitoring, for predictive
analysis to reduce downtime of machinery, for improved
safety and security by real-time monitoring and control, for
improved energy efficiency, and for improved operational
control and training using augmented reality (AR) and virtual
reality (VR) [3].

The widespread adoption of such applications has led to a
substantial increase in the number of M2M communication
connections, resulting in an exponential increase in mobile
data traffic. According to Cisco Visual Networking Index
(VNI), although a number of M2M connections are expected
to increase only 2.4 folds from 2017 to 2022, the mobile
data traffic generated by these connections is expected to
grow more than seven folds in the same period [4]. The
main reason why the amount of data traffic is outgrow-
ing the number of connections is the increased adoption of

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 125423

https://orcid.org/0000-0003-4420-8412
https://orcid.org/0000-0002-1085-1568
https://orcid.org/0000-0002-3344-4463


Ramneek et al.: FENCE Framework for Intelligent Big Data Processing

FIGURE 1. Evolution of edge computing and its role in satisfying stringent QoS requirements of advanced IoT
applications.

data intensive applications requiring high bandwidth and low
latency.

In order to derive useful knowledge from staggering vol-
umes of streaming data, real-time analytics is essential. Big
data analysis requires collection, storage, and processing of
data in real-time [5]. The gathered data is loaded on to the
storage platforms or processed directly using the knowl-
edge discovery platforms that extract useful information from
raw data. The analysis stage involves the processing of big
data and may involve tagging, classification or categoriza-
tion of data to convert unstructured data into structured
data sets for further processing. The final stage involves
application-specific processing and analysis of the classified
or categorized data.

In the past, mobile applications and services have
been upheld by centralized cloud resources for perform-
ing computationally intensive tasks. However, emerging
IoT applications impose significant challenges for cur-
rent computing architectures [6]. Such applications are
resource-hungry and data-intensive and require real-time
analysis, context and location awareness, increased security,
and bandwidth efficiency. These requirements can partially
be fulfilled by employing scalable network infrastructures
including advanced network equipment, intelligent network-
ing applications, and advanced radio access technologies.
However, these applications involve unprecedented levels of
data that needs to be collected and processed in real-time.

As IoT evolves from consumers to industrial sectors, the
growing size and complexity of data make its real-time col-
lection, processing, and analysis even more challenging. This
has led to the evolution of edge computing to support the
requirements of critical IIoT applications, as illustrated in
Figure 1. Stringent requirements of such applications require
the use of scalable manycore edge frameworks with high
performance storage and network capabilities, as compared
to lightweight IoT applications (generating small amount

of data intermittently) requiring simplified edge functional-
ity that can be implemented using endpoint devices or net-
work equipment such as gateways or switches. Low latency
requirements of critical applications can be satisfied by per-
forming data analysis and intelligent application processing
at the edge i.e., at multi-access edge computing (MEC)
servers, micro-data centers or on-premise servers, while his-
torical analysis can be performed at the core [7]. As a result,
there is a need of powerful edge computing infrastructure to
support the stringent requirements of critical applications.

Although edge computing offers groundbreaking solution
for providing low latency by placing key processing tasks
closer to the end user, its performance can be limited by
underlying operating system (OS) and system level bottle-
necks in the edge host. As the processor technology is advanc-
ing towards exa-scale computing era, the processors have
evolved from multicore to manycore systems. Despite the
fact that computing systems have become more and more
powerful with the increase in computing processor cores,
their performance and scalability are limited by underlying
operating environments such as monolithic OSs. Such OSs
have been developed and tuned only for a limited number of
homogeneous processors with a coherent shared memory [8].
However, their design principles such as shared memory,
locking, and caching mechanisms, cause performance bot-
tlenecks that become difficult to overcome as the number of
cores increase.

Most of the solutions to overcome these performance lim-
itations are user-space approaches based on kernel bypass-
ing, especially for the applications involving file system
input/output (I/O) and network intensive workloads [9]. For
instance, the universal kernel bypass suite by solarflare uses
non-volatile memory express (NVMe)-over-TCP and allows
the acceleration of network and storage server traffic. In addi-
tion, data plane development kit (DPDK) [10] and remote
direct memory access (RDMA) are popular kernel bypass

125424 VOLUME 8, 2020



Ramneek et al.: FENCE Framework for Intelligent Big Data Processing

solutions for accelerated network performance [11]. How-
ever, these user space solutions have numerous issues related
to security, flexibility, robustness, inter-operability, and hard-
ware vendor lock-in. Hence, improved OS techniques need
to be investigated for high-performance and flexible edge
computing platforms.

To enhance the edge caching capabilities, several machine
learning (e.g., clustering, reinforcement learning, and sim-
ilarity learning) based edge caching mechanisms have also
been explored [12]. However, such schemes may not be suit-
able while caching unrelated information from heterogeneous
domains.

Moreover, most of the commercial edge computing solu-
tions are tailored for specific use-cases. Thus, they lack flex-
ibility, and their performance can be disrupted by the influx
of huge volume of time-sensitive data. As a remarkable open
edge computing platform,mobile central office re-architected
as a datacenter (m-CORD) leverages a number of open source
projects such as docker, OpenStack, and open network oper-
ating system (ONOS) to provide built-in service capabilities
on the commodity hardware that is managed and coordinated
by XOS [13]. These platforms facilitate the provision of uni-
fied networking and cloud services by the service providers.
However, to reap full benefits of these frameworks, there is
a need to optimize underlying infrastructure for provisioning
high performance, scalable, and flexible hardware and vir-
tualization framework capable of adapting to evolving IIoT
requirements.

In this paper, we introduce the FENCE framework which
is (i) fast, as it provides high performance speedup and low
latency on manycore systems; (ii) extensible, as it allows
seamless inclusion of heterogeneous resources as required;
and (iii) provides a consolidated framework for acceler-
ated communications, efficient caching, and high perfor-
mance computation. We present an illustrative use-case to
demonstrate how edge computing requirements can be sat-
isfied using those technologies. The presented evaluation
results corroborate the enhanced performance and scalability
achieved using the FENCE framework. The main contribu-
tions of this paper can be summarized as follows: 1) we
analyzed the major performance and scalability bottlenecks
in monolithic OS such as Linux; 2) we discussed several
key enabling technologies that can be used to overcome the
performance bottlenecks and provide optimized performance
and scalability; 3) we introduced the FENCE framework for
achieving high performance and scalability for intelligent big
data processing over manycore systems; and 4) we also pre-
sented an evolving graph processing use-case to demonstrate
the performance of FENCE.

The rest of paper is organized as follows: Section II
presents the motivation of FENCE; Section III describes the
details of FENCE framework and its key enabling technolo-
gies; Section IV demonstrates the performance of FENCE
in terms of data reception, storage, and application process-
ing performance, followed by Section V that concludes the
paper.

II. BACKGROUND AND MOTIVATION
The edge computing technology is critical to enable advanced
applications such as streaming data analytics, active moni-
toring and control, location tracking, immersive applications,
and real-time content delivery. Such applications involve a
huge volume of data and have strict Quality of Service (QoS)
requirements. For instance, streaming data analytics requires
massive amount of data to be collected and processed in
real-time to extract meaningful insights. Moreover, since data
may be generated by different types of sensors at different
times, it is important to pre-process and arrange the data in
temporal order [7]. Implementing such analytics at the edge
allows to achieve a higher level of correctness and timeliness
as compared to traditional business analytics.

FIGURE 2. Key characteristics and requirements of critical IoT use-cases
driving the need for optimized manycore edge framework.

While big data analytics in IIoT environments can help to
extract meaningful insights and business values, challenges
related to heterogeneity, huge volume, and real-time velocity
of data need to be addressed. Such requirements may exceed
the computing power of existing systems and the conven-
tional analytic models are no more suitable. As a result,
a lot of research has been focusing on efficient analytics
models such as data streammining and concentric computing
models [14]. Moreover, it is essential to filter and pre-process
the data to expedite the analysis process. As a result, several
libraries, tools, platforms, and advanced methodologies such
as self-adaptive pre-processing [15] have been proposed for
prepossessing the data, including data cleaning, normaliza-
tion, transformation, missing value imputation, noise iden-
tification, and so on [16]. Although data prepossessing is a
powerful tool to treat the complex data and speed-up the anal-
ysis process, it may consume a large amount of processing
resources at the edge.

Hence, there is a need for powerful and scalable edge
infrastructure to support advanced applications. Figure 2

VOLUME 8, 2020 125425



Ramneek et al.: FENCE Framework for Intelligent Big Data Processing

FIGURE 3. Microprocessor trend data for last five decades [19].

summarizes the key IoT use-cases, and highlights the key
drivers for optimized manycore edge framework for provid-
ing high-performance and scalable compute, communication
and caching at the edge. In addition to IIoT, internet of vehi-
cles (IoV) is another emerging paradigm where massive data
generated by autonomous vehicles, IoT devices and the envi-
ronment can be harnessed to provide intelligent IoV services
[17], [18]. Hence, to support time-sensitive content dissem-
ination, and provide intelligent services, high performance
and scalable edge framework is required for performing data
collection, aggregation and processing locally.

Although edge computing offers groundbreaking solution
for providing low latency by placing key processing tasks
closer to the end user, its performance can be limited by
underlying OS and system level bottlenecks in the edge
host.

Looking at the evolution of processors over the last three
decades, it can be observed that the number of transistors
continued to increase until 2008, resulting in higher operat-
ing speeds and single-thread performance, as shown by the
trend-lines in Figure 3 [19]. However, since 2008, although
the transistor density is still increasing, it is becoming
difficult to increase the operating speeds, indicating that
single-thread performance is stagnant. The main reason
for stalled single processor performance is the inability to
increase the clock speed further due to high power consump-
tion and power dissipation. On the other hand, the number
of cores has been increasing significantly since 2008. Thus,
from recent technology advancement trends in processors
technology, it can be seen that there has been a continuous
increase in the number of cores.

However, the performance of existing software architec-
tures andmonolithic OSs does not scale well with the increase
in number of cores. The monolithic OSs were designed as
feature-rich OS for processors with small number of cores.
However, their design principles such as shared memory,
locking, and caching mechanisms cause performance bot-
tlenecks that become difficult to overcome as the number
of cores increase. In the case of single-core processors, the
gap between the on-chip computing power and the memory

access speed could be addressed using sophisticated caching
architectures or pre-fetch engines. However, the emergence
of manycore chips adds another level of complexity and
this issue cannot be addressed by hardware optimizations
alone. Hence, there is a need to focus on software and OS
level bottlenecks to address the issues related to concurrent
access to scarce shared resources (memory bandwidth, net-
work resources, on-chip memory, etc.) by large number of
cores, without a major impact on the overall performance.

First of all, the computation performance of manycore sys-
tems can be affected by the scheduling, synchronization, and
locking mechanisms in the OS kernel, as a large number of
heterogeneous applications with varying requirements access
the shared resources in parallel [8]. The traditional scheduling
mechanisms do not perform well for parallel applications on
manycore systems due to spin-lock contention and a large
number of context switches. This problem is aggravated fur-
ther when limitedmemory bandwidth is shared amongst large
number of CPU cores for compute-intensive applications due
to the increased cost of context switch. Hence, there is a need
for lightweight task scheduling, scalable synchronization and
enhanced locking mechanisms to unlock the potential of
powerful manycore systems.

Early Linux was developed for single processor systems.
Later, kernel 2.0 included support for symmetric multipro-
cessing (SMP), but the performance was not good because
of the big kernel lock that serialized the access across the
system. The real power of SMPwas exploitedwith kernel ver-
sion 2.6.39, that included fine-grained locking mechanism,
resulting in performance improvement. In the later kernel
versions, although big kernel locks have been improved, the
scalabilty problem recurred while testing in the manycore
environment.

To analyze the Linux kernel performance for manycore
systems, we experimented with AIM7 benchmark tool for
ext4 file system with hard disk drive (HDD), solid state drive
(SSD), and virtual memory file system (tmpfs). The shared
workload comprising of even distribution between compute
and I/O operations was used for the AIM7 benchmark to
analyze how the system scales under ever-increasing load.
AIM7 is a multi-user benchmark suite capable of testing the
performance of different aspects of operating system func-
tionalities such as disk-file operations, process creation, user
virtual memory operations, pipe I/O, and compute-bound
arithmetic loops [20]. The experiments conducted with AIM7
for Linux kernel version 4.1 (ticket spinlock) are illustrated
in Figure 4. Experimental results show that there are serious
performance issues in the block I/O environment including
the disk, and scalability up to 60 cores was shown in the
environment where the block I/O was removed (i.e., tmpfs
environment). Performance degradation was observed, with a
significant performance drop from 60 cores on-wards. Thus,
the problems of the locking mechanism itself, the problem of
big kernel lock, and the architecture of traditional operating
systems designed with the concept of sharing and fairness of
resources impose obstacles to Linux scalability in manycore

125426 VOLUME 8, 2020



Ramneek et al.: FENCE Framework for Intelligent Big Data Processing

FIGURE 4. Performance results with AIM7 Benchmark for multi-user
workload for ext4 filesystem with hard disk drive (HDD), solid state drive
(SSD),and virtual memory filesystem (tmpfs) on manycore system.

systems. Hence, there is a need for enhanced locking mecha-
nisms as well as scalable file systems to enhance the caching
performance.

Although the processing power of end-systems has
increased considerably and network speed has scaled up to
high data rates (e.g., 40G/100G), the network performance is
limited by the network stacks in monolithic OS kernels such
as Linux. High performance and scalable communication is
critical for supporting ultra-low latency requirements of edge
applications, as well as for satisfying the QoS requirements
for implementing network function virtualization (NFV) at
the edge. NFV allows implementation of network functions in
software, thereby providing higher flexibility and scalability
for communication between the virtualized applications, and
with the external integrated networks [21]. However, it is dif-
ficult to match the performance of hardware-based network
functions and middleboxes.

Communications performance (i.e., throughput) for 40G
network interface on a manycore system running Linux
kernel 4.1 is illustrated in Figure 5. For small packet sizes,
the achieved rate is much lower than the actual line rate.
Meanwhile, for large packet sizes, a large number of cores are
required to achieve full line rate performance. Moreover, the
performance doesn’t scale beyond 32 cores due to overheads
associated with the kernel network stack. Several core mech-
anisms in the kernel such as scheduling, synchronization,
interrupt handling, memory management, etc. cause serious
performance overheads as the packets travel through the ker-
nel network stack.

Hence, formanycore systems to be ubiquitously used, there
is a need for enhanced system software, software models,
programming models and tools to harness the full capability
of these cores [22]. Current state of art solutions such as
kernel bypass mechanisms and new OS designs are not fea-
sible for flexible application design and processing and large
scale virtualization, as they do not leverage the features of
existing OS kernels that have already verified their robustness
and stability in the production environment. It is therefore
important to address the OS level bottlenecks in existing OSs

FIGURE 5. Variation of packet processing throughput with different
numbers of cores and packet sizes.

so that the flexibility and features offered by software stacks
in monolithic kernels can be used without performance and
scalability issues.

III. FENCE FRAMEWORK
In this section, we first describe the framework of FENCE
and then explain its key enabling technologies.

A. OVERALL ARCHITECTURE
The main architectural components of edge computing
include edge host plane, and the management plane com-
prising of host level management and system level manage-
ment [23]. The FENCE framework and its role as a high
performance and scalable mobile edge host in ETSI MEC
architecture, as a reference architecture [24], is illustrated in
Figure 6. In the MEC architecture, the mobile edge host level
management handles the management of the mobile edge
specific functionality of a particular mobile edge host and
the applications running on it. Meanwhile, the mobile edge
system level management comprises of the MEC orchestra-
tor, operation support system (OSS), and the user application
life-cycle management proxy.

FENCE represents the edge host entity, and its main role
is to provide a high performance and scalable platform and
virtualization infrastructure for providing compute, commu-
nication and storage resources for a diverse set of applica-
tions. However, note that its role is not restricted as MEC
edge host in particular and can also be deployed in micro data
centers, compute on-premise or enterprise edge, depending
on the deployment scenario.

As shown in Figure 6, the FENCE framework comprises of
FENCE edge host and FENCE edge platform. The FENCE
edge platform includes the required functionality for run-
ning edge applications and enabling them to consume edge
services. Also, the FENCE edge host consists of 1) many-
core infrastructure layer, 2) high performance and scalable
OS and virtualization layer, and 3) application and service
layer. The infrastructure layer comprises of a large number of
cores, connected to each other, and to fast storage resources
(SSD, NVMe, Non-Volatile Dual In-line Memory Module

VOLUME 8, 2020 125427



Ramneek et al.: FENCE Framework for Intelligent Big Data Processing

FIGURE 6. FENCE framework architecture.

(NVDIMM)) and high speed network interfaces (40G/100G)
using high-speed interconnect. The types of cores i.e. x64,
x86, ARM, or special processor cores such as FPGA or
GPU can be selected based on the implementation scenario.
To further enhance the performance, heterogeneous cores can
be used together, such that a large number of small cores can
be used for parallel processing and faster cores for execut-
ing the sequential tasks efficiently [25]. The availability of
different types of cores allows resource allocation based on
the specific application requirements, thereby optimizing the
performance and scalability. Moreover, there is a possibility
of seamless inclusion of heterogeneous resources, making the
FENCE framework more flexible and extensible.

The OS and virtualization layer leverages the underlying
manycore infrastructure and further enhances performance
speedup achieved. To overcome the bottlenecks in monolithic
kernels as discussed in the previous section, and achieve opti-
mal performance and scalability, we propose the use of vari-
ous state-of-art OS technologies and kernel enhancements for
manycore systems. As a result, FENCE is capable of provid-
ing (i) high performance computation using lightweight task
scheduling (FLsched), enhanced locking and synchroniza-
tion mechanisms (ShflLock, MV-RLU) and lightweight vir-
tualization; (ii) advanced communications (e.g., accelerated
packet processing) using packet acceleration and optimized
kernel packet processing (mKPAC); (iii) efficient data stor-
age using scalable file systems (hybridF2FS, pNOVA). Each
of these enabling technologies and enhancements supported
by FENCE will be discussed in the subsequent subsection.

Lastly, the application and service layer supports different
IoT applications and various services such as location service,

machine learning engines, and network management service,
etc., required to host edge applications effectively.

B. KEY ENABLING TECHNOLOGIES
In this section, we will highlight the key enabling and opti-
mization technologies for providing high performance and
scalability over manycore systems. These built-in enhance-
ments can help to improve the overall system behavior during
run-time and meet the requirements for massive parallelism,
fast caching, computation, and high speed data transfer.

1) LIGHTWEIGHT TASK SCHEDULING
The dynamic scheduling of tasks on manycore processors
can be challenging and may incur additional overheads. The
existing scheduling mechanisms used in the monolithic OS,
such as completely fair scheduler (CFS), first in first out
(FIFO), round robin (RR) in Linux, do not perform well for
parallel applications on manycore systems due to spin-lock
contentions and a large number of context switches, as sum-
marized in Table 1 [26]. Such schedulers were designed
for a small number of cores such as quad core processors,
however, commonly used servers in existing data centers
comprise of up-to 32 cores. The performance and scalabil-
ity of different applications can be drastically affected by
small sequential components in the system. According to
Amdahl’s law, a significant decrease in performance (max
speed) from 50 to 33 percent can occur even with a small
increase of about 1 to 2 percent in the sequential compo-
nent in the whole system [25]. The existing schedulers in
Linux kernel are unable to handle a high degree of par-
allelism because their design comprises of various locking

125428 VOLUME 8, 2020



Ramneek et al.: FENCE Framework for Intelligent Big Data Processing

TABLE 1. Locks involved in various scheduling mechanisms [26].

primitives such as mutex, read-write semaphores, spinlocks,
etc. The performance degradation becomes worse for com-
munication intensive applications requiring frequent sched-
uler intervention. Another issue is the increased cost of
context switches, which exaggerates when limited memory
bandwidth is shared amongst large number of CPU cores,
especially for compute-intensive applications.

Hence, to overcome these bottlenecks and enhance the
scalability, we advocate the use of light weight schedul-
ing mechanisms that are optimized for manycore systems
with highly parallel workloads. For instance, [26] presents a
lightweight scheduling approach (FLsched) characterized by
a lock-less design, less context switches and more effective
scheduling decisions by minimizing the scheduling updates.
In the case of manycore systems, making fast scheduling
decisions is more critical than making fine-grained decisions
as the availability of a large number of cores can be leveraged
to handle different tasks.

2) LIGHTWEIGHT VIRTUALIZATION
Since edge computing provides a virtualized environment for
hosting IoT application and edge services, it is essential to
extract maximum performance and parallelism while mini-
mizing the impact of virtualization, especially for compute
intensive or latency sensitive applications. Different virtu-
alization technologies such as virtual machines (VM), con-
tainers, and unikernels can be used to allocate virtualized
resources depending on the application requirements [27].

An overview of these virtualization technologies is shown
in Figure 7. VMs share the underlying hardware resources
through virtualization, but run their own copies of the guest
OS. VMs suffer from poor scalability as the hypervisor mul-
tiplexes the hardware resources for assigning virtual CPUs
to physical CPUs, which can cause the preemption of the
guest OS while it is still executing its critical section. In
this case, multi-level scheduling can be used to address the
inconsistency between the hypervisor and the guest OS [28].
Hence, higher throughput and scalability can be achieved
in virtualized environments by preventing preemption when
guest OS is running critical tasks.

FIGURE 7. Overview of virtualization techniques including VMs,
containers and unikernels.

Meanwhile, containers provide a lightweight virtual envi-
ronment for applications by encapsulating only the essential
dependencies and applications over a shared OS. This also
results in low management overhead as compared to VMs.
The shared kernel features also allow a higher density of
virtual instances on given hardware due to the reduced image
volume.

Unikernel is a specialized ultra-lightweight virtualization
technique that allows the creation of a single address space
machine image using library OS. It allows the creation of OS
with the minimal set of OS constructs or libraries, as required
by the applications, thus having a very small footprint [29].
Therefore, unikernel is ultra-lightweight and provides higher
security and deployment efficiency as compared to VMs and
containers.

Virtualization adds another level of complexity in many-
core systems, as the introduction of virtual CPUs further
complicates the scalability of spinlocks for synchronization.
Moreover, manycore systems deployed as edge hosts must
take several key aspects of edge computing such as diverse
application requirements, lightweight performance, software
portability, security and need for high scalability into con-
sideration. Therefore, we consider unikernel as a key can-
didate technology for lightweight virtualization. Unikernels
comprise of a minimal set of constructs required to run
the application, and hence they boot and run faster, involve
less context switching between kernel and user space, and
provide enhanced security through minimized attack sur-
face [30]. Hence, they can potentially extract maximum per-
formance and parallelism while minimizing the impact of
virtualization.

3) SCALABLE LOCKING
Increased adoption of manycore machines has uncovered
scalability issues in monolithic operating systems such as
Linux. Locks are critical to the design of parallelized appli-
cation and concurrent programming in multicore system
software; however, locking algorithms are a primary and
probably most severe cause of performance and scalability
bottlenecks. Lock designs have evolved over time to solve
these issues, however, their design is primarily influenced
by hardware evolution and hence may be optimized only
for a particular platform or scenario. For instance, MCS

VOLUME 8, 2020 125429



Ramneek et al.: FENCE Framework for Intelligent Big Data Processing

lock, a cache-aware implementation of read/write spinlocks
was proposed to alleviate the cache-line congestion occur-
ring when a large number of threads attempt to acquire the
lock in parallel [31]. On the other hand, Cohort locks were
designed to overcome locking issues in non-uniform mem-
ory access (NUMA) systems. However, there is a trade-off,
as the optimized spinlocks suffer from scalability issues in
NUMA systems, while NUMA-aware locking mechanisms
suffer from sub-optimal single-thread performance. Hence,
there is a need to consider other factors such as memory
footprint, core over-subscription, thread count, etc., that may
impact the scalability of different locks and their adoption in
different scenarios.

In this case, we advocate the use of scalable locking
mechanism such as ShflLocks, that consider all these fac-
tors without slowing down the critical path, to achieve high
throughput and scalability [32]. The key idea is to shuffle the
queue of threads waiting to acquire the lock based on some
pre-established policy. Moreover, it allows the implementa-
tion of a diverse set of policies depending on hardware and
application requirements, resulting in high performance and
scalability for a wide array of use-cases.

4) HIGH PERFORMANCE AND SCALABLE
SYNCHRONIZATION
In a manycore system, multiple threads frequently access
shared resources simultaneously, and as the number of
threads running concurrently increases, the performance of
the system depends heavily on the synchronization mech-
anisms. In most software designs, such as operating sys-
tems, database systems, network stacks, and storage systems,
synchronization mechanisms are essential building blocks
and have a significant impact on performance and scala-
bility. Recently, the number of processor cores is increas-
ing and hardware parallelism is rapidly developing, but
the performance scalability of software does not match the
hardware advancement. Various algorithms have been pro-
posed for synchronization; however no algorithm provides
performance scalability in proportion to the hardware per-
formance of modern manycore machines. Hence, to reduce
contention, enhanced synchronization methods such as read-
log-update (RLU) and multi-version RLU (MV-RLU) must
be employed.

Hence it is essential to choose the mechanism that pro-
vides high performance and scalability for a large number of
cores, without compromising the flexibility of use. One such
mechanism is the read-log update (RLU) [33], which is an
extension of the well-known read-copy-update (RCU) mech-
anism. RLU allows an unsynchronized sequence of read oper-
ations to execute in parallel with updates, thereby enhancing
the scalability. Although it offers enhanced performance for
read-mostly workloads, its performance significantly drops
in workloads dominated by write operations, attributed to
the fact that RLU supports only dual version concurrency.
To overcome these limitations, MV-RLU was proposed to
provide efficient multi-versioning [34].

FIGURE 8. Illustration of conventional locking primitives vs. MV-RLU for
large number of high-Speed read/writes for in-memory databases.

Multi-version logging is a mechanism that allows multiple
threads to access shared resources simultaneously. It is a
structure that connects one node or object by version chain
and multi-versions and gives each version a timestamp so that
each thread can access the appropriate version, as shown in
Figure 8. Thismechanism is supported by traditional database
systems, but the biggest problem is the cost of version chain
traverse and performance degradation caused by the recycling
of log buffers. To solve this problem of traditional multi-
version, log buffer recycling is performed in parallel for each
thread, autonomous garbage collection is used to minimize
version chain traverse cost, and timestamp publishing cost is
minimized. Such mechanisms help to considerably improve
the performance and scalability for database management
systems (e.g. Kyoto Cabinet, DBX-1000) used for enhanced
storage and caching support on manycore systems. More-
over, since OS network stack, database systems, and storage
systems rely heavily on synchronization mechanisms, bet-
ter performance and scalability are observed by employing
MV-RLU over FENCE.

5) PACKET ACCELERATION AND IMPROVED KERNEL
PACKET PROCESSING
Communications performance in a virtualized edge platform
is critical to meet the QoS demands of different applications.
As the advanced networks are now capable of supporting
high speeds, the performance bottleneck is shifting from the
bandwidth of the transmission media to the capability of
end-hosts to process the incoming and outgoing data.

Although the processing power of end-systems has
increased considerably and network speed has scaled up
to high data rates (e.g., 40G/100G), the communications
performance is limited by the network stacks in mono-
lithic OS kernels such as Linux. The performance can
further degrade when underlying network resources are
shared between different virtualized applications through net-
work function virtualization (NFV) [21]. Hence, the packet

125430 VOLUME 8, 2020



Ramneek et al.: FENCE Framework for Intelligent Big Data Processing

FIGURE 9. Packet Reception (RX) and Transmission (TX) in Linux kernel
network stack and associated kernel-space overheads.

processing performance in monolithic kernels fail to match
the performance of hardware-based network functions and
middleboxes.

In order to optimize the packet processing performance
for high data rate flows several acceleration techniques have
been exploited [35]. Hardware-based acceleration frame-
works such as ClickNP and PacketShader and NFV platforms
such as NetVM and ClickOS have been used to accelerate
the network processing. Moreover, network offloading tech-
niques including kernel-bypass mechanisms (e.g., DPDK and
Netmap) and user-space TCP stacks (e.g., mTCP, accelerated
network stack (ANS)) provide high packet processing perfor-
mance [36]. However, such acceleration mechanisms have a
number of drawbacks such as excessive memory usage, low
security, scalability issues, and may require development of
new systems or re-implementation of software functions from
scratch in user space, instead of relying on well-implemented
and robust kernel stacks. Moreover, since kernel bypass
approaches provide drivers for user space applications to
directly access the hardware, they are exposed to security
vulnerabilities, especially when applications from different
service providers and third-party application providers share
the same virtualized infrastructure.

Therefore, we emphasize on leveraging the robustness of
implementation of existing feature-rich kernels and use their
built-in features such as netfilter, iptables, ipsec, cgroups,
etc., for flexible composition and deployment of network
functions. High performance and scalability are achieved
over FENCE by using mKPAC for addressing the bottlenecks
in the transmit (TX) and receive (RX) paths of Linux kernel
network stack. Main overheads are associated with RX/TX
data and metadata buffer allocation and freeing, TX/RX ring
descriptor management, TX spinlocks, and TX interrupt
handling and cleanup, as summarized in Figure 9 [37]. In
addition, optimizations such as the use of huge pages to
reduce the frequency of page table lookups, CPU pinning
to improve cache locality, NUMA-aware resource allocation
etc. can be exploited to leverage heterogeneous manycore
systems for performance improvement. To further optimize
the throughput and latency, offloading the network processing
to smart NICs (system-on-chip (SoC), NICs with on-board

FPGAs) or packet processing based on extended Berkeley
packet filer (eBPF) [38], and traffic classifier can be consid-
ered [39].

6) SCALABLE FILE SYSTEMS
Fast and scalable storage at the edge is one of the key enablers
for satisfying the latency requirement of I/O intensive use-
cases, that require a huge amount of data to be stored and
accessed, at least temporarily, for efficient analysis and deci-
sion making. Providing storage capabilities at the edge helps
to process the data locally, avoiding the transmission cost,
delay and security risks associated with sending data to the
cloud.

As application level parallelism is increasing in response to
the advancement of the hardware, high performance database
engines are being designed to leverage the computational
parallelism and handle the queries concurrently. The paral-
lel write performance of storage devices significantly affect
the performance of I/O intensive workloads as compared
to parallel reads. Hence, choosing the right memory and
storage solutions at the edge is critical for mission-critical
use-cases, and flash-memory based fast storage mediums like
SSDs can be the promising solutions. To further enhance the
scalability for I/O intensive workloads, NVMe has been used
for accessing SSDs connected through high speed intercon-
nect such as PCI Express bus. In addition, evolving edge
computing has triggered the use of persistent memory mod-
ules such as NVDIMM. By connecting non-volatile NAND
flash memory based storage media via dual in-line memory
module (DIMM) slots, low access latency is achieved as
NVDIMM devices are directly exposed to the memory bus
without the intervention of I/O controllers [40].

In spite of the availability of fast storage and related
specifications for parallelism, the traditional file systems in
monolithic OS disrupt the application scalability, attributed
mainly to indexing structure, consistency mechanisms, and
coarse-grained locking mechanisms used by them [41]. As
a result, new file systems such as flash-friendly file sys-
tem (F2FS) and non-volatile memory accelerated file sys-
tem (NOVA) were developed for improving the performance
of fast storage devices. However, the scalability issues for I/O
intensive applications still remained unsolved.

Hence, there is a need to address the scalability issues to
exploit the full potential of high speed storage on manycore
systems. For instance, the F2FS shows performance degrada-
tion on parallel write operations due to synchronization over-
heads, high processing overhead when multiple threads call
Fsync in parallel, and overheads related to periodic check-
pointing mechanism to recover from system crashes. To mit-
igate these overheads, FENCE makes use of scalable file
systems such as hybridF2FS [42]. HybridF2FS mechanism
proposes (i) the use of fine-grained range locks, allowing
parallel write to mutually exclusive file ranges, and (ii) use
of extended NVM storage space for storing file and file sys-
tem metadata at high speed during checkpointing and Fsync
operations [43].

VOLUME 8, 2020 125431



Ramneek et al.: FENCE Framework for Intelligent Big Data Processing

FIGURE 10. Overview of FENCE prototype for evolving graph processing flow.

Similarly, NOVA is an advanced persistent NVM file sys-
tem that ensures data and metadata consistency by logging
on per-file basis. Moreover, for persistent memory such as
NVDIMM, NOVA outperforms legacy file systems [44].
Although such NVM-based file systems provide better per-
formance (higher throughput and lower read/write latency)
as compared to the block device based file systems, they also
exhibit scalability issues when multiple threads perform I/O
operations simultaneously. The scalability issue in NOVA is
attributed to the coarse-grained locking mechanism per file
and invalidation of cache-lines of waiting threads when a
reader lock is acquired. To overcome these issues, a variant of
NOVA called pNOVA has been proposed [45]. It implements
an interval tree based fine-grained range locking mechanism
and alleviates the cache-line invalidation by using range
locking variable per-file. Hence, by employing hybridF2FS
and pNOVA in FENCE, high read/write throughput and high
scalability is achieved for a large number of cores, as these
file systems are optimized for parallel reads and writes.

IV. PERFORMANCE EVALUATION
To illustrate the benefits of the proposed framework,
we implemented a prototype of FENCE on manycore system
and used it for performing massive stream processing for
evolving graph processing application. Graphs are the key
building blocks used to address various problems including
machine learning, data mining, scientific computing, world
wide web, and social networks. However, an unprecedented
increase in the size of data sets poses fundamental challenges
to current graph processing engines [46]. To overcome this
issue, most of the research is focused on distributed graph
processing engines, which involves high cost (large number
of servers and interconnects) and complexity (load imbal-
ance, distributed locking, etc.). Hence, FENCE framework
can potentially be used to solve the capacity and performance
issues.

Figure 10 shows the overview of the processing flow for
graph engine, commonly used for analyzing streaming big

data in real-time. A large amount of stream data is con-
tinuously generated and delivered to the server. In the data
reception phase, the data is received and stored in the tempo-
rary storage such as in-memory database. In-memory storage
is faster than disk-optimized databases as accessing data in
memory eliminates seek time when querying the data, which
provides faster and more predictable performance than disk.
The storage step processes the temporarily stored data into
meaningful graph data, and stores it in the database for further
use. These databases are then regularly accessed and used for
graph processing to make decisions.

To achieve scalable performance required for receiving,
storing, and processing the data for evolving graph process-
ing, we applied some of enabling techniques and optimiza-
tions such as mKPAC, MV-RLU, hybridF2FS, and pNOVA,
(discussed in Section III-B), as illustrated in Figure 10.
56-core Intel Xeon processor with 512 MB memory, run-
ning Linux kernel version 4.1, 40G Intel XL710 network
interface card (NIC), and Samsung 860 pro 512GB SSD
were used for the prototype implementation. We also tested
the performance with Intel Optane Data Center Persistent
Memory Module (DCPMM) persistent memory (Apachep-
ass) 128GB*12, DDR4 PC4 ECC Register 32GB*12 to
demonstrate the benefit of FENCE for advanced storage
media.

A. DATA RECEPTION PERFORMANCE
High-speed incoming data received via high speed network
interface (40G Intel XL710), is quickly received using the
kernel network stack and passed on to the system for further
processing. To overcome the kernel space overheads asso-
ciated with the RX processing path of the network stack,
mKPAC kernel-level optimizations were applied to Linux
kernel running on the manycore server. As a result, optimized
RX performance, i.e., faster data reception with lower data
loss is achieved. The performance enhancement achieved
using mKPAC on FENCE, as compared to the baseline Linux
kernel is illustrated in Figure 11(a). With 64 Bytes packet

125432 VOLUME 8, 2020



Ramneek et al.: FENCE Framework for Intelligent Big Data Processing

FIGURE 11. Data reception performance: (a) RX throughout and
(b) memory read/write throughput (read:write ratio of 1:1).

size, up to 40 percent acceleration in RX rate, in packets
per second (PPS), as compared to baseline Linux kernel, was
achieved using FENCE.

The received data is then temporarily stored in in-memory
database before it is read into the databases for further storage
and processing. The read operations for storing the graph
data to the disk are performed in parallel with the large write
operations to the memory. In order to solve the bottleneck
caused by concurrent read and write operations, we adapted
MV-RLU into in-memory database. To address these issues,
MV-RLU employs a lock free structure through multi-
versioning, which leads to improved performance. Specifi-
cally, as illustrated in Figure 11(b), MV-RLU improves the
throughput (in operations per second) up to 45 percent for a
large number of cores, as compared to RLU in the baseline
system.

To summarize, high-speed data ingestion can be achieved
by using mKPAC for enhanced kernel packet processing
and MV-RLU for optimized read/write performance for
in-memory database.

B. STORAGE PERFORMANCE
High-speed storage involves continuously reading the data
stored in the temporary storage and converting it into mean-
ingful graph data, and storing the converted graph data in
the database. The read/write performance and manycore
scalability can be degraded when multiple threads attempt
to read/write to a shared file concurrently, as discussed in
Section III-B. In this case, high performance variant of F2FS
file systems i.e., hybridF2FS can be applied for FENCE

FIGURE 12. Storage performance (read/write throughput) for: (a) SSD
and (b) NVDIMM.

to overcome these bottlenecks and support high speed and
scalable storage for SSD (Samsung 860 pro 512GB SSD).
The read/write throughputs for hybridF2FS in FENCE and
F2FS in the baseline system are illustrated in Figure 12(a).
It can be seen that HybridF2FS shows around 6x improve-
ment in performance as compared to F2FS as the number
of cores increases. To mitigate the overheads that arise when
multiple threads attempt to write the meaningful graph data to
the database, hybridF2FS uses fine-grained range locks and
extends theNVMstorage space for storing file and file system
metadata at high speed.

Moreover, as NVDIMM is a promising storage tech-
nology for future use in edge computing, as discussed
in Section III-B, we tested its performance to demonstrate
the benefit of FENCE for advanced storage media (Intel
Optane). In this case, pNOVA, a high performance variant
of NOVA, was used. pNOVA implements an interval tree
based fine-grained range locking mechanism, to improve
the read/write performance when a large number of threads
try to read/write in parallel. From Figure 12(b), it can be
clearly seen that pNOVA significantly outperforms NOVA
over Linux, and the performance scales well with the increase
of the number of cores. As a result, fast and scalable storage
performance was achieved for advanced storage media, while
storing the relevant graph data for further processing.

C. APPLICATION PROCESSING PERFORMANCE
Different state of art technologies applied together help to
optimized different subsystems of Linux, resulting in better
overall system performance and scalability for data recep-
tion, storage, and processing. Hence, the full potential of

VOLUME 8, 2020 125433



Ramneek et al.: FENCE Framework for Intelligent Big Data Processing

FIGURE 13. Graph processing execution results for PageRank analysis at: (a) t = 6s and (b) t = 13s.

underlying manycore systems can be exploited, resulting in
enhanced application performance and scalability. The pro-
posed optimizations result in a large volume of data being
available for efficient and accurate application processing.
To show the application processing performance, we imple-
mented an evolving graph processing engine [46], capable of
processing a very large number of edges on a single machine.

Efficient graph processing is the key requirement for many
applications, including graph analytic platforms. Graph ana-
lytics is an extremely flexible and powerful tool, that can
consume both structured and unstructured data and works
particularly well in cases with complex relationships among
data points. Hence, it is particularly suitable for discovering
unknown patterns and relationships between data in IIoT sce-
narios generating complex and dynamic data. For instance,
its application to smart manufacturing, which is characterized
by heterogeneous data with temporal and spatial redundancy,
can help in enhancing supply-chain efficiency, improving

factory operations and product quality, reducing machine
downtime, creating new business values and enhancing cus-
tomer experience.

In the current prototype, we tested the performance of
graph processing for the PageRank algorithm. PageRank is
one of the well-known link analysis algorithms and it assigns
a numerical weight to each graph set, with the purpose of
measuring its relative importance for big data application
using an evolving graph engine. We demonstrate the supe-
riority of FENCE in handling large volume and velocity of
data by running PageRank on the Twitter graph data [47].
This enables the emulation of graph processing based on
tweets generated and delivered in real-time. Note that a lot of
YouTube related keywords appeared in tweets in real-time.

The results for the execution of the PageRank algorithm
are illustrated in Figure 13. At time t = 6s, the differences
in ranking by FENCE and baseline Linux are shown in
Figure 13(a). It can be observed that the rank of YouTube is

125434 VOLUME 8, 2020



Ramneek et al.: FENCE Framework for Intelligent Big Data Processing

the highest in the case of FENCE. On the other hand, the rank
of Facebook is the highest on the system running baseline
Linux. Eventually, at time t = 13s, Figure 13(b) shows that
the YouTube rank is updated to the highest on the Linux,
similar to the value observed in FENCE. This demonstrates
that baseline Linux takes a significantly longer time to reflect
real-time data. The latency in processing the incoming data
makes it difficult to obtain accurate results and update them
in real-time.Meanwhile, in the case of FENCE, a lot of stream
data was received quickly through OS and software level
optimizations, resulting in immediate processing of real-time
data and accurate decision making.

V. CONCLUSION
The massive amount of data being generated in the IoT era
needs to be harnessed and processed effectively to provide
intelligent data-driven solutions. This requires high perfor-
mance edge computing platforms to augment the intelligent
networking effectively. This paper introduced a fast, exten-
sible, and consolidated edge (FENCE) framework for intel-
ligent big data processing. We analyzed the key drivers for
edge computing in industrial IoT domains, and discussed
how the FENCE framework can overcome OS and software
level bottlenecks in manycore systems. We discussed var-
ious enabling technologies and system level optimization
techniques for ensuring high performance and scalability in
FENCE. The presented evaluation results corroborate the
enhanced performance and scalability achieved using the
FENCE framework. Given the high performance and scal-
ability provided by FENCE, several additional challenges
(e.g., distributed analyticsmodel, data sharing acrossmultiple
domains, and security/privacy) need to be addressed for the
ideal deployment of edge computing solutions in a distributed
environment, which will be considered in the future work.

REFERENCES
[1] B. Marr. (2019). How Much Data Do We Create Every Day? The

Mind-Blowing Stats Everyone Should Read. [Online]. Available:
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-
do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/

[2] D. Mourtzis, E. Vlachou, and N. Milas, ‘‘Industrial big data as a result
of IoT adoption in manufacturing,’’ Procedia CIRP, vol. 55, pp. 290–295,
Jan. 2016.

[3] B. Chen, J. Wan, A. Celesti, D. Li, H. Abbas, and Q. Zhang, ‘‘Edge
computing in IoT-based manufacturing,’’ IEEE Commun. Mag., vol. 56,
no. 9, pp. 103–109, Sep. 2018.

[4] Cisco. (2019). Cisco Visual Networking Index: Global Mobile Data
Traffic Forecast Update, 2018–2022 Whitepaper. [Online]. Available:
http://www.cisco.com

[5] M. H. Rehman, I. Yaqoob, K. Salah, I. Muhammad, P. Jayaraman, and
C. Perera, ‘‘The role of big data analytics in industrial Internet of Things,’’
Future Gener. Comput. Syst., vol. 99, pp. 247–259, Oct. 2019.

[6] H. Chang, A. Hari, S. Mukherjee, and T. V. Lakshman, ‘‘Bringing the
cloud to the edge,’’ in Proc. IEEE Conf. Comput. Commun. Workshops
(INFOCOM WKSHPS), Apr. 2014, pp. 346–351.

[7] M.Mohammadi, A. Al-Fuqaha, S. Sorour, andM.Guizani, ‘‘Deep learning
for IoT big data and streaming analytics: A survey,’’ IEEE Commun.
Surveys Tuts., vol. 20, no. 4, pp. 2923–2960, Jun. 2018.

[8] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek,
R. Morris, and N. Zeldovich, ‘‘An analysis of Linux scalability to many
cores,’’ inProc. USENIXConf. Operating Syst. Design Implement. (OSDI),
Oct. 2010, pp. 1–16.

[9] I. Zhang, J. Liu, A. Austin, M. L. Roberts, and A. Badam, ‘‘I’m not dead
yet!: The role of the operating system in a kernel-bypass era,’’ in Proc.
Workshop Hot Topics Operating Syst., May 2019, pp. 73–80.

[10] (2019). Data Plane Development Kit. [Online]. Available: http://www.
dpdk.org/

[11] R. Mittal, A. Shpiner, A. Panda, E. Zahavi, A. Krishnamurthy, S. Rat-
nasamy, and S. Shenker, ‘‘Revisiting network support for RDMA,’’ in
Proc. Conf. ACM Special Interest Group Data Commun., Aug. 2018,
pp. 313–326.

[12] Z. Chang, L. Lei, Z. Zhou, S. Mao, and T. Ristaniemi, ‘‘Learn to cache:
Machine learning for network edge caching in the big data era,’’ IEEE
Wireless Commun., vol. 25, no. 3, pp. 28–35, Jun. 2018.

[13] (2019). M-CORD Open Source Reference Solution for 5G Mobile Wire-
less Net—Works. [Online]. Available: https://www.opennetworking.org/m-
cord/

[14] M. H. U. Rehman, E. Ahmed, I. Yaqoob, I. A. T. Hashem, M. Imran, and
S. Ahmad, ‘‘Big data analytics in industrial IoT using a concentric com-
puting model,’’ IEEE Commun. Mag., vol. 56, no. 2, pp. 37–43, Feb. 2018.

[15] K. Lan, S. Fong, W. Song, A. Vasilakos, and R. Millham, ‘‘Self-adaptive
pre-processing methodology for big data stream mining in Internet of
Things environmental sensormonitoring,’’ Symmetry, vol. 9, no. 10, p. 244,
Oct. 2017.

[16] S. García, S. Ramírez-Gallego, J. Luengo, J. M. Benítez, and F. Herrera,
‘‘Big data preprocessing: Methods and prospects,’’ Big Data Anal., vol. 1,
no. 1, pp. 1–22, Nov. 2016.

[17] J. Zhang and K. B. Letaief, ‘‘Mobile edge intelligence and computing
for the Internet of vehicles,’’ Proc. IEEE, vol. 108, no. 2, pp. 246–261,
Feb. 2020.

[18] Z. Zhou, C. Gao, C. Xu, Y. Zhang, S. Mumtaz, and J. Rodriguez, ‘‘Social
big-data-based content dissemination in Internet of vehicles,’’ IEEE Trans.
Ind. Informat., vol. 14, no. 2, pp. 768–777, Feb. 2018.

[19] K. Rupp. (2020). 42 Years of Microprocessor Trend Data.
[Online]. Available: https://www.karlrupp.net/2018/02/42-years-of-
microprocessor- trend-data/

[20] SourceForge. (2020). AIM Benchmarks. [Online]. Available: https://
sourceforge.net/projects/aimbench/

[21] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, ‘‘Network function virtu-
alization: Challenges and opportunities for innovations,’’ IEEE Commun.
Mag., vol. 53, no. 2, pp. 90–97, Feb. 2015.

[22] Ramneek, S.-J. Cha, S. H. Jeon, Y. J. Jeong, J. M. Kim, S. Jung, and
S. Pack, ‘‘Boosting edge computing performance through heterogeneous
manycore systems,’’ in Proc. Int. Conf. Inf. Commun. Technol. Converg.
(ICTC), Oct. 2018, pp. 922–924.

[23] Y. Ai, M. Peng, and K. Zhang, ‘‘Edge computing technologies for Internet
of Things: A primer,’’ Digit. Commun. Netw., vol. 4, no. 2, pp. 77–86,
Apr. 2018.

[24] ETSI. (2019). Multi-access Edge Computing (MEC); Framework and
Reference Architecture. [Online]. Available: https://www.etsi.org/

[25] M. D. Hill and M. R. Marty, ‘‘Amdahl’s law in the multicore era,’’ Com-
puter, vol. 41, no. 7, pp. 33–38, Jul. 2008.

[26] H. Jo,W. Kang, C. Min, and T. Kim, ‘‘FLsched: A lockless and lightweight
approach to OS scheduler for Xeon Phi,’’ in Proc. 8th Asia–Pacific Work-
shop Syst., Sep. 2017, pp. 1–8.

[27] R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar, and J. Ott, ‘‘Consolidate
IoT edge computing with lightweight virtualization,’’ IEEE Netw., vol. 32,
no. 1, pp. 102–111, Jan. 2018.

[28] S. Kashyap, C. Min, and T. Kim, ‘‘Scaling guest OS critical sections with
ECS,’’ in Proc. Usenix Annu. Tech. Conf. (ATC), Jul. 2018, pp. 159–171.

[29] M. Plauth, L. Feinbube, and A. Polze, ‘‘A performance survey
of lightweight virtualization techniques,’’ in Proc. Eur. Conf.
Service-Oriented Cloud Comput. (ESOCC), Sep. 2017, pp. 34–48.

[30] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh,
T. Gazagnaire, S. Smith, S. Hand, and J. Crowcroft, ‘‘Unikernels:
Library operating systems for the cloud,’’ in Proc. ACM Conf.
Architectural Support Program. Lang. Operating Syst. (ASPLOS),
Mar. 2013, pp. 461–472.

[31] J. M. Mellor-Crummey andM. L. Scott, ‘‘Algorithms for scalable synchro-
nization on shared-memory multiprocessors,’’ ACM Trans. Comput. Syst.
(TOCS), vol. 9, no. 1, pp. 21–65, Feb. 1991.

[32] S. Kashyap, I. Calciu, X. Cheng, C. Min, and T. Kim, ‘‘Scalable and
practical lockingwith shuffling,’’ inProc. 27th ACMSymp. Operating Syst.
Princ., Oct. 2019, pp. 586–599.

VOLUME 8, 2020 125435



Ramneek et al.: FENCE Framework for Intelligent Big Data Processing

[33] A. Matveev, N. Shavit, P. Felber, and P. Marlier, ‘‘Read-log-update: A
lightweight synchronization mechanism for concurrent programming,’’ in
Proc. 25th Symp. Operating Syst. Princ. - SOSP, 2015, pp. 168–183.

[34] J. Kim, A. Mathew, S. Kashyap, M. K. Ramanathan, and C. Min, ‘‘MV-
RLU: Scaling read-log-update with multi-versioning,’’ in Proc. 24th Int.
Conf. Architectural Support Program. Lang. Operating Syst., Apr. 2019,
pp. 779–792.

[35] S. Gallenmuller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle,
‘‘Comparison of frameworks for high-performance packet IO,’’ in Proc.
ACM/IEEE Symp. Archit. Netw. Commun. Syst. (ANCS), May 2015,
pp. 29–38.

[36] E. Y. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, D. Han, and K. Park,
‘‘mTCP: A highly scalable user-level TCP stack for Multicore systems,’’
in Proc. USENIX Conf. Netw. Syst. Design Implement. (NSDI), Apr. 2014,
pp. 489–502.

[37] Ramneek, M. Kumar, T. Kim, and S. Jung, ‘‘MKPAC: Kernel packet
processing for manycore systems,’’ in Proc. 19th Int. Middleware Conf.
Middleware, Dec. 2018, pp. 15–16.

[38] S. Baidya, Y. Chen, and M. Levorato, ‘‘EBPF-based content and
computation-aware communication for real-time edge computing,’’ in
Proc. IEEE INFOCOM Conf. Comput. Commun. Workshops (INFOCOM
WKSHPS), Apr. 2018, pp. 865–870.

[39] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend, T. Herbert,
D. Ahern, and D. Miller, ‘‘The eXpress data path: Fast programmable
packet processing in the operating system kernel,’’ in Proc. 14th Int. Conf.
Emerg. Netw. Exp. Technol., Dec. 2018, pp. 54–66.

[40] R. Chen, Z. Shao, and T. Li, ‘‘Bridging the I/O performance gap for big
data workloads: A new NVDIMM-based approach,’’ in Proc. 49th Annu.
IEEE/ACM Int. Symp. Microarchit. (MICRO), Oct. 2016, pp. 1–12.

[41] C. Min, S. Kashyap, S. Maass, and T. Kim, ‘‘Understanding manycore
scalability of file systems,’’ in Proc. USENIX Annu. Tech. Conf. (ATC),
Jun. 2016, pp. 71–85.

[42] (2019). oslab-swrc/hybridF2FS: A Varient of F2FS using Hybrid Log-
ging with NVM and SSD. [Online]. Available: https://github.com/oslab-
swrc/hybridF2FS

[43] C.-G. Lee, H. Byun, S. Noh, H. Kang, and Y. Kim, ‘‘Write optimization of
log-structured flash file system for parallel I/O on manycore servers,’’ in
Proc. 12th ACM Int. Conf. Syst. Storage, May 2019, pp. 21–32.

[44] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour,
Y. J. Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson,
‘‘Basic performance measurements of the intel optane DC persis-
tent memory module,’’ 2019, arXiv:1903.05714. [Online]. Available:
http://arxiv.org/abs/1903.05714

[45] J.-H. Kim, J. Kim, H. Kang, C.-G. Lee, S. Park, and Y. Kim, ‘‘PNOVA:
Optimizing shared file I/O operations of NVM file system on manycore
servers,’’ in Proc. 10th ACM SIGOPS Asia–Pacific Workshop Syst. APSys,
2019, pp. 1–7.

[46] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and T. Kim, ‘‘Mosaic:
Processing a trillion-edge graph on a single machine,’’ in Proc. 12th Eur.
Conf. Comput. Syst., Apr. 2017, pp. 527–543.

[47] H. Kwak, C. Lee, H. Park, and S. Moon, ‘‘What is Twitter, a social network
or a news media?’’ in Proc. 19th Int. Conf. World Wide Web WWW, 2010,
pp. 591–600.

RAMNEEK (Associate Member, IEEE) received
the B.Tech. degree in computer science and engi-
neering from Guru Nanak Dev University, Punjab,
India, in 2010, the M.Tech. degree in IT from
the International Institute of Information Tech-
nology (IIIT) Bangalore, India, in 2013, and the
Ph.D. degree in grid and supercomputing from
the Korea Institute of Science and Technology
Information (KISTI) Campus, Korea University of
Science and Technology, Daejeon, South Korea,

in August 2017. She was a Postdoctoral Researcher with the Cloud Com-
puting Core SW Research Section, Electronics and Telecommunications
Research Institute (ETRI), Daejeon, from December 2017 to December
2019. She is currently a Research Professor with the Mobile Network
and Communications Laboratory, Korea University. Her research interests
include networking and communication, the Internet of Things, block chain
technology, network systems, and operating systems.

SEUNG-JUN CHA received the B.E., M.E., and
Ph.D. degrees in computer engineering from
Chungnam National University, Daejeon, South
Korea, in 2006, 2008, and 2013, respectively.
Since 2013, he has been with the Electronics and
Telecommunications Research Institute (ETRI),
where he is currently a Senior Researcher with the
Cloud Computing SW Research Section. He has
researched about database, XML, semantic web
services, and middleware for service. His current

research interests include operating system principles, including multi-
kernel, microkernel, light weight kernel, and unikernel for the manycore
systems.

SANGHEON PACK (Senior Member, IEEE)
received the B.S. and Ph.D. degrees in com-
puter engineering from Seoul National University,
Seoul, South Korea, in 2000 and 2005, respec-
tively. From 2005 to 2006, he was a Postdoc-
toral Fellow with the Broadband Communications
Research Group, University of Waterloo, Water-
loo, ON, Canada. In 2007, he joined Korea Uni-
versity, Seoul, as a Faculty Member, where he is
currently a Professor with the School of Electrical

Engineering. His research interests include future internet, SDN/ICN/DTN,
mobility management, mobile cloud networking, multimedia networking,
and vehicular networks. He was a recipient of the IEEE/IEIE Joint Award for
IT Young Engineers Award, in 2017, the KIISE Young Information Scientist
Award, in 2017, the Korea University Techno Complex (KUTC) Crimson
Professor, in 2015, the KICS Haedong Young Scholar Award, in 2013, and
the IEEE ComSoc APB Outstanding Young Researcher Award, in 2009.
He served as a TPC Vice-Chair for information systems, the IEEE WCNC
2020, a track Chair for the IEEE CCNC 2019, a TPC Chair for EAI Qshine
2016, a Publication Co-Chair for the IEEE INFOCOM2014, ACMMobiHoc
2015, a Co-Chair for the IEEE VTC 2010-Fall Transportation Track, a Co-
Chair for the IEEE WCSP 2013 Wireless Networking Symposium, a TPC
Vice-Chair for ICOIN 2013, and a Publicity Co-Chair for the IEEE SECON
2012. He serves as an Editor for the IEEE INTERNET OF THINGS (IOT) JOURNAL,
Journal of Communications Networks (JCN), and IET Communications.
He is a Guest Editor of the IEEE TRANSACTIONS ON EMERGING TOPICS IN

COMPUTING (TETC).

SEUNG HYUB JEON received the M.S. degree
from Korea University. He is currently a Senior
Researcher with the Cloud Computing SW
Research Section, Electronics and Telecommuni-
cations Research Institute (ETRI), Daejeon, South
Korea. He focuses on the operating system scala-
bility in manycore systems. His research interests
include system software for parallel computing,
virtualization, and multitier memory systems.

YEON JEONG JEONG received the B.S. andM.S.
degrees in computer science from Pusan National
University, Pusan, South Korea, in 1994 and 1996,
respectively, and the Ph.D. degree in computer
science fromChungnamNational University, Dae-
jeon, South Korea, in 2005. He is currently a Prin-
cipal Researcher with the Cloud Computing SW
Research Section, Electronics and Telecommuni-
cations Research Institute (ETRI), Daejeon. His
research interests include unikernel, light weight

kernel, and multikernel for manycore systems.

125436 VOLUME 8, 2020



Ramneek et al.: FENCE Framework for Intelligent Big Data Processing

JIN MEE KIM received the B.E. degree in com-
puter science from Pusan National University,
in 1988, and the M.E. degree in computer science
from Chungnam National University, in 1999.
Since 1988, she has been with the Electronics and
Telecommunications Research Institute (ETRI),
where she is currently a Principal Researcher
with the Basic Technology Research Center
for Next-Generation OS. Her research interests
include high-performance computing and operat-

ing system principles for the manycore systems.

SUNGIN JUNG received the B.E. and M.E.
degrees in computer engineering from Pusan
National University, in 1987 and 1989, respec-
tively, and the Ph.D. degree in computer engineer-
ing from ChungnamNational University, Daejeon,
South Korea, in 2006. He was a UNIX kernel
developer during the 1990s and has 29 years of
experience in the operating systems area. He had
participated in developing UNIX kernel for SMP,
ccNUMA, and MPP systems in cooperation with

Novell and SCO. In 2000, he began the Linux Kernel Project for Car-
rier Grade Linux (CGL) and Data Center Linux (DCL) work groups of
Linux Foundation. He is currently a Principal Researcher with the Basic
Technology Research Center for Next-Generation OS at Electronics and
Telecommunications Research Institute (ETRI). Since 2014, he has been
the project manager of the manycore OS research. He serves OSS activities,
such as OSS policy and international events. His research interests include
operating system kernel, cloud computing, HPC, and OSS.

VOLUME 8, 2020 125437


